AI Conversational System Development
In this chapter, you will learn how to develop a Chinese celebrity AI conversational system.
🎥 Tutorial Video
📋 Learning Content
1. Environment Preparation
Hugging Face Configuration
- Visit Hugging Face to register an account
- Generate access token:
- Visit Token Settings Page
- Click "New token"
- Select "Write" permission
- Generate token and save it
Important Note
The token is very important, please save it carefully. You will not be able to view the complete token again after closing the page.
Development Environment Configuration
- Required Software
- Dependency Installation
- Python 3.8+
- Git
- Cursor editor
# Create virtual environment
python -m venv venv
# Activate virtual environment
# Windows:
venv\Scripts\activate
# Linux/Mac:
source venv/bin/activate
# Install dependencies
pip install gradio huggingface_hub
2. Project Creation
Hugging Face Space Setup
- Log in to Hugging Face
- Click "New Space"
- Fill in basic information:
- Owner: Your username
- Space name: role-play-chat
- SDK: Gradio
- Hardware: CPU basic
- Visibility: Public
Local Project Configuration
# Clone Space repository
git clone https://huggingface.co/spaces/your-username/role-play-chat
cd role-play-chat
# Create project structure
mkdir -p {assets,utils,tests}
touch main.py character_profiles.py dialogue_system.py
3. System Architecture Design
4. Core Functionality Implementation
Dialogue System
class DialogueSystem:
def __init__(self):
self.history = []
self.current_character = None
async def process_message(self, message: str) -> str:
"""Process user message and generate response"""
if not self.current_character:
return "Please select a conversation character first"
# Add to history
self.history.append({"role": "user", "content": message})
# Generate response
response = await self._generate_response(message)
self.history.append({"role": "assistant", "content": response})
return response
def manage_context(self, max_length: int = 2048):
"""Manage dialogue context length"""
context_length = sum(len(msg["content"]) for msg in self.history)
while context_length > max_length and len(self.history) > 1:
removed = self.history.pop(0)
context_length -= len(removed["content"])
Character System
class Character:
def __init__(self, name: str, profile: dict):
self.name = name
self.background = profile.get("background", "")
self.personality = profile.get("personality", [])
self.speaking_style = profile.get("speaking_style", {})
def get_prompt(self) -> str:
"""Generate character prompt"""
return f"""
You are now playing {self.name}.
Background: {self.background}
Personality: {', '.join(self.personality)}
Speaking style: {self.speaking_style}
"""